enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    The following algorithm generates the next permutation lexicographically after a given permutation. It changes the given permutation in-place. Find the largest index k such that a[k] < a[k + 1]. If no such index exists, the permutation is the last permutation. Find the largest index l greater than k such that a[k] < a[l].

  3. Parity of a permutation - Wikipedia

    en.wikipedia.org/wiki/Parity_of_a_permutation

    Considering the symmetric group S n of all permutations of the set {1, ..., n}, we can conclude that the map sgn: S n → {−1, 1} that assigns to every permutation its signature is a group homomorphism. [2] Furthermore, we see that the even permutations form a subgroup of S n. [1] This is the alternating group on n letters, denoted by A n. [3]

  4. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    This is the limit of the probability that a randomly selected permutation of a large number of objects is a derangement. The probability converges to this limit extremely quickly as n increases, which is why !n is the nearest integer to n!/e. The above semi-log graph shows that the derangement graph lags the permutation graph by an almost ...

  5. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  6. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.

  7. Permutation pattern - Wikipedia

    en.wikipedia.org/wiki/Permutation_pattern

    The goal in such investigations is to find a formula for the Möbius function of an interval [σ, π] in the permutation pattern poset which is more efficient than the naïve recursive definition. The first such result was established by Sagan & Vatter (2006), who gave a formula for the Möbius function of an interval of layered permutations. [18]

  8. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    By the formulas above, those n × n permutation matrices form a group of order n! under matrix multiplication, with the identity matrix as its identity element, a group that we denote . The group P n {\displaystyle {\mathcal {P}}_{n}} is a subgroup of the general linear group G L n ( R ) {\displaystyle GL_{n}(\mathbb {R} )} of invertible n × n ...

  9. Lehmer code - Wikipedia

    en.wikipedia.org/wiki/Lehmer_code

    The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth.