Search results
Results from the WOW.Com Content Network
Another beastly palindromic prime is 700666007. [4] Ribenboim defines a triply palindromic prime as a prime p for which: p is a palindromic prime with q digits, where q is a palindromic prime with r digits, where r is also a palindromic prime. [5] For example, p = 10 11310 + 4661664 × 10 5652 + 1, which has q = 11311 digits, and 11311 has r ...
The only known non-palindromic number whose cube is a palindrome is 2201, and it is a conjecture the fourth root of all the palindrome fourth powers are a palindrome with 100000...000001 (10 n + 1). Gustavus Simmons conjectured there are no palindromes of form n k for k > 4 (and n > 1).
131 is a Sophie Germain prime, [1] an irregular prime, [2] the second 3-digit palindromic prime, and also a permutable prime with 113 and 311. It can be expressed as the sum of three consecutive primes, 131 = 41 + 43 + 47. 131 is an Eisenstein prime with no imaginary part and real part of the form 3 n − 1 {\displaystyle 3n-1} .
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
This follows from all primes bigger than 2 being odd (making their differences even, i.e. multiples of 2) and from differences between pairs of natural numbers with reversed digits being multiples of 9 (which itself is a consequence of <math>10^n-1</math> being a multiple of 9 for every non-negative integer ).
A strobogrammatic prime is a strobogrammatic number that is also a prime number, i.e., a number that is only divisible by one and itself (e.g., 11). [3] It is a type of ambigram , words and numbers that retain their meaning when viewed from a different perspective, such as palindromes .
In number theory, reversing the digits of a number n sometimes produces another number m that is divisible by n. This happens trivially when n is a palindromic number; the nontrivial reverse divisors are 1089, 2178, 10989, 21978, 109989, 219978, 1099989, 2199978, ... (sequence A008919 in the OEIS).
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.