Search results
Results from the WOW.Com Content Network
Considering the generic m × n matrix whose entries are algebraically independent variables x i,j, these minors are polynomials of degree r + 1. The ideal of k[x i,j] generated by these polynomials is a determinantal ideal. Since the equations defining minors are homogeneous, one can consider Y r either as an affine variety in mn-dimensional ...
That is, if M = (x ij) with 1 ≤ i, j ≤ N is a distance matrix for a metric distance, then the entries on the main diagonal are all zero (that is, the matrix is a hollow matrix), i.e. x ii = 0 for all 1 ≤ i ≤ N, all the off-diagonal entries are positive (x ij > 0 if i ≠ j), (that is, a non-negative matrix), the matrix is a symmetric ...
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an m×n matrix and B is an n×p matrix, then their matrix product AB is the m×p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column ...
B i consists of n block matrices of size m × m, stacked column-wise, and all these matrices are all-zero except for the i-th one, which is a m × m identity matrix I m. Then the vectorized version of X can be expressed as follows: vec ( X ) = ∑ i = 1 n B i X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {B ...
It is also known as Principal Coordinates Analysis (PCoA), Torgerson Scaling or Torgerson–Gower scaling. It takes an input matrix giving dissimilarities between pairs of items and outputs a coordinate matrix whose configuration minimizes a loss function called strain, [2] which is given by (,,...,) = (, (),) /, where denote vectors in N-dimensional space, denotes the scalar product between ...
Each of the four Maxwell's equations are obtained from the matrix representation. This is done by taking the sums and differences of row-I with row-IV and row-II with row-III respectively. The first three give the y, x, and z components of the curl and the last one gives the divergence conditions. The matrices M are all non-singular and all are ...
An M-matrix is commonly defined as follows: Definition: Let A be a n × n real Z-matrix.That is, A = (a ij) where a ij ≤ 0 for all i ≠ j, 1 ≤ i,j ≤ n.Then matrix A is also an M-matrix if it can be expressed in the form A = sI − B, where B = (b ij) with b ij ≥ 0, for all 1 ≤ i,j ≤ n, where s is at least as large as the maximum of the moduli of the eigenvalues of B, and I is an ...