Ads
related to: randomly generated maths questionskutasoftware.com has been visited by 10K+ users in the past month
sidekickbird.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
After choosing a box at random and withdrawing one coin at random that happens to be a gold coin, the question is what is the probability that the other coin is gold. As in the Monty Hall problem, the intuitive answer is 1 / 2 , but the probability is actually 2 / 3 .
If one considers only the odd numbers in the sequence generated by the Collatz process, then each odd number is on average 3 / 4 of the previous one. [16] (More precisely, the geometric mean of the ratios of outcomes is 3 / 4 .) This yields a heuristic argument that every Hailstone sequence should decrease in the long run ...
the (pseudo-random) number generator has certain characteristics (e.g. a long "period" before the sequence repeats) the (pseudo-random) number generator produces values that pass tests for randomness; there are enough samples to ensure accurate results; the proper sampling technique is used; the algorithm used is valid for what is being modeled
Mathematics: Random numbers are also employed where their use is mathematically important, such as sampling for opinion polls and for statistical sampling in quality control systems. Computational solutions for some types of problems use random numbers extensively, such as in the Monte Carlo method and in genetic algorithms .
Following Gottlob Frege and Bertrand Russell, Hilbert sought to define mathematics logically using the method of formal systems, i.e., finitistic proofs from an agreed-upon set of axioms. [4] One of the main goals of Hilbert's program was a finitistic proof of the consistency of the axioms of arithmetic: that is his second problem.
Ads
related to: randomly generated maths questionskutasoftware.com has been visited by 10K+ users in the past month
sidekickbird.com has been visited by 100K+ users in the past month