Search results
Results from the WOW.Com Content Network
If a mechanical system has no losses, then the input power must equal the output power. This provides a simple formula for the mechanical advantage of the system. Let the input power to a device be a force F A acting on a point that moves with velocity v A and the output power be a force F B acts on a point that moves with velocity v B.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
The requirement for power input to an ideal mechanism to equal power output provides a simple way to compute mechanical advantage from the input-output speed ratio of the system. The power input to a gear train with a torque T A applied to the drive pulley which rotates at an angular velocity of ω A is P=T A ω A .
In physics and mechanics, torque is the rotational analogue of linear force. [1] ... radians per revolution. In the following formulas, P is power, ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
mechanical work: joule (J) width: meter (m) electrical reactance: ohm (Ω) position vector: meter (m) displacement: meter (m) a generic unknown: varied depending on context admittance: siemens (S) compressibility factor: unitless electrical impedance
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.