Search results
Results from the WOW.Com Content Network
Function f : [Z] 3 → [Z] 6 given by [k] 3 ↦ [3k] 6 is a semigroup homomorphism, since [3k ⋅ 3l] 6 = [9kl] 6 = [3kl] 6. However, f([1] 3) = [3] 6 ≠ [1] 6, so a monoid homomorphism is a semigroup homomorphism between monoids that maps the identity of the first monoid to the identity of the second monoid and the latter condition cannot be ...
The experimental determination of a body's center of mass makes use of gravity forces on the body and is based on the fact that the center of mass is the same as the center of gravity in the parallel gravity field near the earth's surface. The center of mass of a body with an axis of symmetry and constant density must lie on this axis.
A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.
Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.
That means a monad (,,) on a monoidal category (,,) together with coherence maps ,: and : satisfying three axioms that make an opmonoidal functor, and four more axioms that make the unit and the multiplication into opmonoidal natural transformations. Alternatively, an opmonoidal monad is a monad on a monoidal category such that the category of ...
M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"
A commutative monoid on which a monus operator is defined is called a commutative monoid with monus, or CMM. The monus operator may be denoted with the − symbol because the natural numbers are a CMM under subtraction ; it is also denoted with the − ˙ {\displaystyle \mathop {\dot {-}} } symbol to distinguish it from the standard subtraction ...
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.