Search results
Results from the WOW.Com Content Network
Numpy is one of the most popular Python data libraries, and TensorFlow offers integration and compatibility with its data structures. [66] Numpy NDarrays, the library's native datatype, are automatically converted to TensorFlow Tensors in TF operations; the same is also true vice versa. [66]
Horovod is a free and open-source software framework for distributed deep learning training using TensorFlow, Keras, PyTorch, and Apache MXNet. Horovod is hosted under the Linux Foundation AI (LF AI). [3] Horovod has the goal of improving the speed, scale, and resource allocation when training a machine learning model. [4]
Linux, macOS, Windows: Python: Python: Only on Linux No Yes No Yes Yes Keras: François Chollet 2015 MIT license: Yes Linux, macOS, Windows: Python: Python, R: Only if using Theano as backend Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network ...
It is designed to follow the structure and workflow of NumPy as closely as possible and works with various existing frameworks such as TensorFlow and PyTorch. [5] [6] The primary functions of JAX are: [2] grad: automatic differentiation; jit: compilation; vmap: auto-vectorization; pmap: Single program, multiple data (SPMD) programming
PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo, a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and inference performance across major cloud platforms. [25] [26]
Automated Deep Learning Using Neural Network Intelligence: Develop and Design PyTorch and TensorFlow Models Using Python. Apress. Apress. ISBN 978-1484281482 .
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Dask is an open-source Python library for parallel computing.Dask [1] scales Python code from multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy.