Search results
Results from the WOW.Com Content Network
Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ambient matrix spaces. Vladimir Arnold posed [ 16 ] a problem: Find a canonical form of matrices over a field for which the set of representatives of matrix conjugacy classes is a ...
In particular, if either or in the complex domain can be computed with some complexity, then that complexity is attainable for all other elementary functions. Below, the size n {\displaystyle n} refers to the number of digits of precision at which the function is to be evaluated.
That is, denoting each complex number by the real matrix of the linear transformation on the Argand diagram (viewed as the real vector space ), affected by complex -multiplication on . Thus, an m × n {\displaystyle m\times n} matrix of complex numbers could be well represented by a 2 m × 2 n {\displaystyle 2m\times 2n} matrix of real numbers.
The rational univariate representation or RUR is a representation of the solutions of a zero-dimensional polynomial system over the rational numbers which has been introduced by F. Rouillier. [ 10 ] A RUR of a zero-dimensional system consists in a linear combination x 0 of the variables, called separating variable , and a system of equations [ 11 ]
In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .
Applicable to: square matrix A; Decomposition (complex version): =, where U is a unitary matrix, is the conjugate transpose of U, and T is an upper triangular matrix called the complex Schur form which has the eigenvalues of A along its diagonal.
The theory of quadratic forms and methods used in their study depend in a large measure on the nature of the coefficients, which may be real or complex numbers, rational numbers, or integers. In linear algebra , analytic geometry , and in the majority of applications of quadratic forms, the coefficients are real or complex numbers.