Search results
Results from the WOW.Com Content Network
The number π (/ p aɪ /; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
At about the same time, the Egyptian Rhind Mathematical Papyrus (dated to the Second Intermediate Period, c. 1600 BCE, although stated to be a copy of an older, Middle Kingdom text) implies an approximation of π as 256 ⁄ 81 ≈ 3.16 (accurate to 0.6 percent) by calculating the area of a circle via approximation with the octagon.
Inscribe a square in the circle, so that its four corners lie on the circle. Between the square and the circle are four segments. If the total area of those gaps, G 4, is greater than E, split each arc in half. This makes the inscribed square into an inscribed octagon, and produces eight segments with a smaller total gap, G 8.
Square root of 2, Pythagoras constant [4] 1.41421 35623 73095 04880 [Mw 2] [OEIS 3] Positive root of = 1800 to 1600 BCE [5] Square root of 3, Theodorus' constant [6] 1.73205 08075 68877 29352 [Mw 3] [OEIS 4] Positive root of = 465 to 398 BCE
A poll of readers conducted by The Mathematical Intelligencer in 1990 named Euler's identity as the "most beautiful theorem in mathematics". [11] In another poll of readers that was conducted by Physics World in 2004, Euler's identity tied with Maxwell's equations (of electromagnetism ) as the "greatest equation ever".
Proofs of the mathematical result that the rational number 22 / 7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations.
It has been found that a circular area is to the square on a line equal to the quadrant of the circumference, as the area of an equilateral rectangle is to the square on one side. [12] An "equilateral rectangle" is, by definition, a square. This is an assertion that the area of a circle is the same as that of a square with the same perimeter.