Search results
Results from the WOW.Com Content Network
They are crucial for the repair of muscle, but have a very limited ability to replicate. Activated by stimuli such as injury or high mechanical load, satellite cells are required for muscle regeneration in adult organisms. [4] In addition, satellite cells have the capability to also differentiate into bone or fat. In this way, satellite cells ...
Development and regeneration involves the coordination and organization of populations cells into a blastema, which is "a mound of stem cells from which regeneration begins". [25] Dedifferentiation of cells means that they lose their tissue-specific characteristics as tissues remodel during the regeneration process.
During regeneration, only cartilage cells can form new cartilage tissue, only muscle cells can form new muscle tissue, and so on. The dedifferentiated cells still retain their original specification. [12] To begin the physical formation of a new limb, regeneration occurs in a distal to proximal sequence. [17]
Regeneration in humans is the regrowth of lost tissues or organs in response to injury. This is in contrast to wound healing, or partial regeneration, which involves closing up the injury site with some gradation of scar tissue.
Minor injuries from daily activities can be repaired without inflammation or cell death. Major injuries contribute to myofiber necrosis, inflammation, and cause satellite cells to activate and proliferate. The process of myofiber necrosis to myofiber formation results in muscle regeneration. [23] Muscle regeneration occurs in three overlapping ...
The unusual microscopic anatomy of a muscle cell gave rise to its terminology. The cytoplasm in a muscle cell is termed the sarcoplasm; the smooth endoplasmic reticulum of a muscle cell is termed the sarcoplasmic reticulum; and the cell membrane in a muscle cell is termed the sarcolemma. [9] The sarcolemma receives and conducts stimuli.
The existing epithelial cells can replicate, and, using the basement membrane as a guide, eventually bring the kidney back to normal. After regeneration is complete, the damage is undetectable, even microscopically. [citation needed] Healing must happen by repair in the case of injury to cells that are unable to regenerate (e.g. neurons).
Permanent cells are cells that are incapable of regeneration. These cells are considered to be terminally differentiated and non-proliferative in postnatal life. This includes neurons , heart cells , skeletal muscle cells [ 1 ] and red blood cells . [ 2 ]