Search results
Results from the WOW.Com Content Network
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...
The closely related large Schröder numbers are equal to twice the Schröder–Hipparchus numbers, and may also be used to count several types of combinatorial objects including certain kinds of lattice paths, partitions of a rectangle into smaller rectangles by recursive slicing, and parenthesizations in which a pair of parentheses surrounding the whole sequence of elements is also allowed.
If one considers only the odd numbers in the sequence generated by the Collatz process, then each odd number is on average 3 / 4 of the previous one. [16] (More precisely, the geometric mean of the ratios of outcomes is 3 / 4 .) This yields a heuristic argument that every Hailstone sequence should decrease in the long run ...
For an infinite sequence, one is often more interested in the long-term behaviors of the sequence than the behaviors it exhibits early on. In which case, one way to formally capture this concept is to say that the sequence possesses a certain property eventually, or equivalently, that the property is satisfied by one of its subsequences (), for some .