enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Point group - Wikipedia

    en.wikipedia.org/wiki/Point_group

    Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper ...

  3. Point groups in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_two_dimensions

    In geometry, a two-dimensional point group or rosette group is a group of geometric symmetries that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special ...

  4. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  5. Molecular symmetry - Wikipedia

    en.wikipedia.org/wiki/Molecular_symmetry

    The point group symmetry of a molecule is defined by the presence or absence ... Assigning each molecule a point group classifies molecules into categories with ...

  6. List of spherical symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_spherical_symmetry...

    All of the discrete point symmetries are subgroups of certain continuous symmetries. They can be classified as products of orthogonal groups O(n) or special orthogonal groups SO(n). O(1) is a single orthogonal reflection, dihedral symmetry order 2, Dih 1. SO(1) is just the identity. Half turns, C 2, are needed to complete.

  7. Schoenflies notation - Wikipedia

    en.wikipedia.org/wiki/Schoenflies_notation

    The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule, the notation is often sufficient and commonly used for spectroscopy.

  8. Crystallographic point group - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_point_group

    Each crystallographic point group defines the (geometric) crystal class of the crystal. The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency, or electro-optical features such as the Pockels effect.

  9. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    In order to assign a point group for any given molecule, it is necessary to find the set of symmetry operations present on it. The symmetry operation is an action, such as a rotation around an axis or a reflection through a mirror plane.