Search results
Results from the WOW.Com Content Network
The space of documents is then scanned using HDBSCAN, [20] and clusters of similar documents are found. Next, the centroid of documents identified in a cluster is considered to be that cluster's topic vector. Finally, top2vec searches the semantic space for word embeddings located near to the topic vector to ascertain the 'meaning' of the topic ...
Linear subspace of dimension 1 and 2 are referred to as a line (also vector line), and a plane respectively. If W is an n-dimensional vector space, any subspace of dimension 1 less, i.e., of dimension is called a hyperplane. [53] The counterpart to subspaces are quotient vector spaces. [54]
The Plücker embedding was first defined by Julius Plücker in the case =, = as a way of describing the lines in three-dimensional space (which, as projective lines in real projective space, correspond to two-dimensional subspaces of a four-dimensional vector space).
The enhancement of the Enhanced Topic-based Vector Space Model (eTVSM) [2] (literature: ) is a proposal on how to derive term vectors from an Ontology. Using a synonym Ontology created from WordNet Kuropka shows good results for document similarity. If a trivial Ontology is used the results are similar to Vector Space model.
In mathematics, projectivization is a procedure which associates with a non-zero vector space V a projective space P(V), whose elements are one-dimensional subspaces of V.More generally, any subset S of V closed under scalar multiplication defines a subset of P(V) formed by the lines contained in S and is called the projectivization of S.
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.
Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.
In particular, a nonzero invariant vector (i.e. a fixed point of T) spans an invariant subspace of dimension 1. As a consequence of the fundamental theorem of algebra, every linear operator on a nonzero finite-dimensional complex vector space has an eigenvector. Therefore, every such linear operator in at least two dimensions has a proper non ...