Search results
Results from the WOW.Com Content Network
For a water electrolysis unit operating at a constant temperature of 25 °C without the input of any additional heat energy, electrical energy would have to be supplied at a rate equivalent of the enthalpy (heat) of reaction or 285.830 kJ (0.07940 kWh) per gram mol of water consumed. [6] It would operate at a cell voltage of 1.48 V.
Joule heating (also known as resistive, resistance, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.. Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an electrical conductor equals the product of its resistance and the ...
An electric resistance heater has a thermal efficiency close to 100%. [8] When comparing heating units, such as a highly efficient electric resistance heater to an 80% efficient natural gas-fuelled furnace, an economic analysis is needed to determine the most cost-effective choice.
Less work is required to move heat than for conversion into heat, and because of this, heat pumps, air conditioners and refrigeration systems can have a coefficient of performance greater than one. The COP is highly dependent on operating conditions, especially absolute temperature and relative temperature between sink and system, and is often ...
An electric radiative space heater. Electric infrared radiant heating uses heating elements that reach a high temperature. The element is usually packaged inside a glass envelope resembling a light bulb and with a reflector to direct the energy output away from the body of the heater.
A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. [1] Heat is generated by the passage of electric current through a resistor through a process known as Joule heating. Heating elements are used in household appliances, industrial equipment, and scientific ...
Heating seasonal performance factor (HSPF) is a term used in the heating and cooling industry. HSPF is specifically used to measure the efficiency of air source heat pumps. HSPF is defined as the ratio of heat output (measured in BTUs) over the heating season to electricity used (measured in watt-hours). [1] [2] It therefore has units of BTU ...
A heat rate value of 2 kWh/kWh gives an efficiency factor of 50%. A heat rate value of 4 MJ/MJ gives an efficiency factor of 25%. For other units, make sure to use a corresponding conversion factor for the units. For example, if using Btu/kWh, use a conversion factor of 3,412 Btu per kWh to calculate the efficiency factor.