Search results
Results from the WOW.Com Content Network
Butyrate fermentation is a process that produces butyric acid via anaerobic bacteria. This process occurs commonly in clostridia which can be isolated from many anaerobic environments such as mud, fermented foods , and intestinal tracts or feces. [ 1 ]
Solventogenesis is the biochemical production of solvents (usually acetone and butanol) by Clostridium species. [1] It is the second phase of ABE fermentation. [2] This figure shows acidogenic and solventogenic phases of ABE fermentation by solventogenic Clostridium species.
The production of butanol by biological means was first performed by Louis Pasteur in 1861. [5] In 1905, Austrian biochemist Franz Schardinger found that acetone could similarly be produced. [5] In 1910 Auguste Fernbach (1860–1939) developed a bacterial fermentation process using potato starch as a feedstock in the production of butanol. [6]
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
These bacteria begin with butyrate fermentation, as described above, but, when the pH drops below 5, they switch into butanol and acetone production to prevent further lowering of the pH. Two molecules of butanol are formed for each molecule of acetone. The change in the pathway occurs after acetoacetyl CoA formation.
Clostridium acetobutylicum, ATCC 824, is a commercially valuable bacterium sometimes called the "Weizmann Organism", after Jewish Russian-born biochemist Chaim Weizmann. A senior lecturer at the University of Manchester , England , he used them in 1916 as a bio-chemical tool to produce at the same time, jointly, acetone , ethanol , and n ...
Carbon dioxide is cogenerated. Like ethanol, butanol can be produced by fermentation processes. Saccharomyces yeast are known to produce these higher alcohols at temperatures above 75 °F (24 °C). The bacterium Clostridium acetobutylicum can feed on cellulose (also an alcohol) to produce butanol on an industrial scale. [34]
Butyryl-CoA is an intermediate of the fermentation pathway found in Clostridium kluyveri. [18] [19] [20] This species can ferment acetyl-CoA and succinate into butanoate, extracting energy through the process. [19] [20] The fermentation pathway from ethanol to acetyl-CoA to butanoate is also known as ABE fermentation.