Search results
Results from the WOW.Com Content Network
"A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...
To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
the empty set is an extended binary tree; if T 1 and T 2 are extended binary trees, then denote by T 1 • T 2 the extended binary tree obtained by adding a root r connected to the left to T 1 and to the right to T 2 [clarification needed where did the 'r' go in the 'T 1 • T 2 ' symbol] by adding edges when these sub-trees are non-empty.
The randomized binary search tree, introduced by Martínez and Roura subsequently to the work of Aragon and Seidel on treaps, [7] stores the same nodes with the same random distribution of tree shape, but maintains different information within the nodes of the tree in order to maintain its randomized structure.
Threaded binary tree; Top tree; Treap; Tree rotation; V. Vantage-point tree; W. WAVL tree; Z. Zip tree This page was last edited on 13 January 2018, at 21:25 (UTC). ...
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2]