Search results
Results from the WOW.Com Content Network
Then whichever hyperbola (A) or (B) is used, the operation is an example of a hyperbolic involution where the asymptote is invariant. Hyperbolically orthogonal lines lie in different sectors of the plane, determined by the asymptotes of the hyperbola, thus the relation of hyperbolic orthogonality is a heterogeneous relation on sets of lines in ...
Conversely, the circle B is the envelope of polars of points on the hyperbola, and the locus of poles of tangent lines to the hyperbola. Two tangent lines to B have no (finite) poles because they pass through the center C of the reciprocation circle C; the polars of the corresponding tangent points on B are the
The radius and tangent are hyperbolic orthogonal at a since p(a) and are reflections of each other in the asymptote y = x of the unit hyperbola. When interpreted as split-complex numbers (where j j = +1 ), the two numbers satisfy j p ( a ) = d p d a . {\displaystyle jp(a)={\tfrac {dp}{da}}.}
Examples: The orthoptic of a parabola is its directrix (proof: see below),; The orthoptic of an ellipse + = is the director circle + = + (see below),; The orthoptic of a hyperbola =, > is the director circle + = (in case of a ≤ b there are no orthogonal tangents, see below),
Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u. The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.
For example the orthogonal trajectories of a pencil of confocal ellipses are the confocal hyperbolas with the same foci. For Cassini ovals one has: The orthogonal trajectories of the Cassini curves with foci , are the equilateral hyperbolas containing , with the same center as the Cassini ovals (see picture). Proof:
Ahead, we’ve rounded up 50 holy grail hyperbole examples — some are as sweet as sugar, and some will make you laugh out loud. 50 common hyperbole examples. I’m so hungry, I could eat a horse
A parabola, being tangent to the line at infinity, would have its center being a point on the line at infinity. Hyperbolas intersect the line at infinity in two distinct points and the polar lines of these points are the asymptotes of the hyperbola and are the tangent lines to the hyperbola at these points of infinity.