Search results
Results from the WOW.Com Content Network
A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if: m ≤ a, for all elements a of the ...
In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable. The size of the largest antichain in a partially ordered set is known as its width .
An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...
Every cofinal subset of a partially ordered set with maximal elements must contain all maximal elements. A subset L {\displaystyle L} of a partially ordered set P {\displaystyle P} is said to be a lower set of P {\displaystyle P} if it is downward closed: if y ∈ L {\displaystyle y\in L} and x ≤ y {\displaystyle x\leq y} then x ∈ L ...
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
The identity function on any partially ordered set is always an order automorphism. Negation is an order isomorphism from ( R , ≤ ) {\displaystyle (\mathbb {R} ,\leq )} to ( R , ≥ ) {\displaystyle (\mathbb {R} ,\geq )} (where R {\displaystyle \mathbb {R} } is the set of real numbers and ≤ {\displaystyle \leq } denotes the usual numerical ...