Search results
Results from the WOW.Com Content Network
A better alternative to the use of potentially hazardous oxidizers is an NMR tube cleaner (right). It is an apparatus which uses a vacuum to flush solvent and/or a detergent solution through the entire length of the NMR tube. In this apparatus, the NMR tube 1 (with the cap 3 fixed to the base of the NMR tube), is placed upside down on the ...
In solid-state NMR spectroscopy, magic-angle spinning (MAS) is a technique routinely used to produce better resolution NMR spectra. MAS NMR consists in spinning the sample (usually at a frequency of 1 to 130 kHz) at the magic angle θ m (ca. 54.74°, where cos 2 θ m =1/3) with respect to the direction of the magnetic field.
Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...
Other NMR-active nuclei can also cause these satellites, but carbon is most common culprit in the proton NMR spectra of organic compounds. Sometimes other peaks can be seen around 1 H peaks, known as spinning sidebands and are related to the rate of spin of an NMR tube. These are experimental artifacts from the spectroscopic analysis itself ...
The NMR sample is prepared in a thin-walled glass tube – an NMR tube. An NMR spectrometer typically consists of a spinning sample-holder inside a very strong magnet, a radio-frequency emitter, and a receiver with a probe (an antenna assembly) that goes inside the magnet to surround the sample, optionally gradient coils for diffusion ...
Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.
S. Selection rule; Sequential walking; Shim (magnetism) Shinnar–Le Roux algorithm; Shoolery's rule; Solid-state nuclear magnetic resonance; Solvent suppression
The physical basis of MRI is the spatial encoding of the nuclear magnetic resonance (NMR) signal obtainable from water protons (i.e. hydrogen nuclei) in biologic tissue. In terms of MRI, signals with different spatial encodings that are required for the reconstruction of a full image need to be acquired by generating multiple signals ...