Search results
Results from the WOW.Com Content Network
Data classification is the process of organizing data into categories based on attributes like file type, content, or metadata. The data is then assigned class labels that describe a set of attributes for the corresponding data sets. The goal is to provide meaningful class attributes to former less structured information.
A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or ...
John Ward Creswell is an American academician known for his work in mixed methods research. He has written numerous journal articles and 27 books on mixed methods research, research methods , and qualitative research .
Another definition of research is given by John W. Creswell, who states that "research is a process of steps used to collect and analyze information to increase our understanding of a topic or issue". It consists of three steps: pose a question, collect data to answer the question, and present an answer to the question.
Data classification may refer to: Data classification (data management) Data classification (business intelligence) Classification (machine learning), classification of data using machine learning algorithms; Assigning a level of sensitivity to classified information; In computer science, the data type of a piece of data
An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied.
The first step in doing a data classification is to cluster the data set used for category training, to create the wanted number of categories. An algorithm, called the classifier, is then used on the categories, creating a descriptive model for each. These models can then be used to categorize new items in the created classification system. [2]
To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new, synthetic data point. Many modifications and extensions have been made to the SMOTE method ever since its ...