enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    In algebra, a unit or invertible element [a] of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that = =, where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u.

  3. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers.

  4. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    Ring theory studies the structure of rings; their representations, or, in different language, modules; special classes of rings (group rings, division rings, universal enveloping algebras); related structures like rngs; as well as an array of properties that prove to be of interest both within the theory itself and for its applications, such as ...

  5. Ideal (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Ideal_(ring_theory)

    The factor ring of a maximal ideal is a simple ring in general and is a field for commutative rings. [12] Minimal ideal: A nonzero ideal is called minimal if it contains no other nonzero ideal. Zero ideal: the ideal {}. [13] Unit ideal: the whole ring (being the ideal generated by ). [9]

  6. Matrix ring - Wikipedia

    en.wikipedia.org/wiki/Matrix_ring

    In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix ... (identity matrix) as the unity. ...

  7. Abstract algebra - Wikipedia

    en.wikipedia.org/wiki/Abstract_algebra

    In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. [1] Algebraic structures include groups , rings , fields , modules , vector spaces , lattices , and algebras over a field .

  8. Rng (algebra) - Wikipedia

    en.wikipedia.org/wiki/Rng_(algebra)

    In mathematics, and more specifically in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity.

  9. Artinian ring - Wikipedia

    en.wikipedia.org/wiki/Artinian_ring

    In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals.