Search results
Results from the WOW.Com Content Network
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
Product rule: For two differentiable functions f and g, () = +. An operation d with these two properties is known in abstract algebra as a derivation . They imply the power rule d ( f n ) = n f n − 1 d f {\displaystyle d(f^{n})=nf^{n-1}df} In addition, various forms of the chain rule hold, in increasing level of generality: [ 12 ]
A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing , and the limit = (+) exists. [2] This means that, for every positive real number , there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.
A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...
It states that every function that results from the differentiation of another function has the intermediate value property: the image of an interval is also an interval. When ƒ is continuously differentiable ( ƒ in C 1 ([ a , b ])), this is a consequence of the intermediate value theorem .
A function is (totally) differentiable if its total derivative exists at every point in its domain. Conceptually, the definition of the total derivative expresses the idea that d f a {\displaystyle df_{a}} is the best linear approximation to f {\displaystyle f} at the point a {\displaystyle a} .
In mathematics, Fermat's theorem (also known as interior extremum theorem) is a method to find the local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function's derivative is zero at that point).
The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R n. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold