Search results
Results from the WOW.Com Content Network
Suppose further that the walk stops if it reaches 0 or m ≥ a; the time at which this first occurs is a stopping time. If it is known that the expected time at which the walk ends is finite (say, from Markov chain theory), the optional stopping theorem predicts that the expected stop position is equal to the initial position a.
Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...
The earliest stopping time for reaching crossing point a, := {: =}, is an almost surely bounded stopping time. Then we can apply the strong Markov property to deduce that a relative path subsequent to τ a {\displaystyle \tau _{a}} , given by X t := W ( t + τ a ) − a {\displaystyle X_{t}:=W(t+\tau _{a})-a} , is also simple Brownian motion ...
The concept of a stopped martingale leads to a series of important theorems, including, for example, the optional stopping theorem which states that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial value.
Let T be some stopping time for R. Then the loop-erased random walk until time T is LE(R([1,T])). In other words, take R from its beginning until T — that's a (random) path — erase all the loops in chronological order as above — you get a random simple path. The stopping time T may be fixed, i.e. one may perform n steps and
Retrieved from "https://en.wikipedia.org/w/index.php?title=Optional_stopping&oldid=240311808"This page was last edited on 22 September 2008, at 22:44
For convenience (see the proof below using the optional stopping theorem) and to specify the relation of the sequence (X n) n∈ and the filtration (F n) n∈ 0, the following additional assumption is often imposed:
In mathematics, progressive measurability is a property in the theory of stochastic processes.A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable.