Search results
Results from the WOW.Com Content Network
The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 ... (m, n) (least common multiple of m and n) is the product of all prime factors of m or n ...
Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10 n + d ( d = 1, 3, 7, 9) are primes ending in the decimal digit d .
It repeatedly finds the first unmarked number, marks it as prime (dark colors) and marks its square and all later multiples as composite (lighter colors). After marking the multiples of 2 (red), 3 (green), 5 (blue), and 7 (yellow), all primes up to the square root of the table size have been processed, and all remaining unmarked numbers (11, 13 ...
Arrange the digits 1 to 9 in order so that the first two digits form a multiple of 2, the first three digits form a multiple of 3, the first four digits form a multiple of 4 etc. and finally the entire number is a multiple of 9.
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b , it can be said that b is a multiple of a if b = na for some integer n , which is called the multiplier .
[1] [4] This can be generalized with wheel factorization, forming the initial list only from numbers coprime with the first few primes and not just from odds (i.e., numbers coprime with 2), and counting in the correspondingly adjusted increments so that only such multiples of p are generated that are coprime with those small primes, in the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Animation demonstrating the smallest Pythagorean triple, 3 2 + 4 2 = 5 2. A Pythagorean triple consists of three positive integers a, b, and c, such that a 2 + b 2 = c 2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.