Search results
Results from the WOW.Com Content Network
According to the figure, a bull week is followed by another bull week 90% of the time, a bear week 7.5% of the time, and a stagnant week the other 2.5% of the time. Labeling the state space {1 = bull, 2 = bear, 3 = stagnant} the transition matrix for this example is
A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain .
[1] [2]: 10 It is also called a probability matrix, transition matrix, substitution matrix, or Markov matrix. The stochastic matrix was first developed by Andrey Markov at the beginning of the 20th century, and has found use throughout a wide variety of scientific fields, including probability theory , statistics, mathematical finance and ...
Change-of-basis matrix, associated with a change of basis for a vector space. Stochastic matrix , a square matrix used to describe the transitions of a Markov chain . State-transition matrix , a matrix whose product with the state vector x {\displaystyle x} at an initial time t 0 {\displaystyle t_{0}} gives x {\displaystyle x} at a later time t ...
The transition matrix is characterized entirely by its upper-left block . Definition. A distribution on { 0 , 1 , 2 , . . . } {\displaystyle \{0,1,2,...\}} is a discrete phase-type distribution if it is the distribution of the first passage time to the absorbing state of a terminating Markov chain with finitely many states.
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...
Given a Markov transition matrix and an invariant distribution on the states, we can impose a probability measure on the set of subshifts. For example, consider the Markov chain given on the left on the states A , B 1 , B 2 {\displaystyle A,B_{1},B_{2}} , with invariant distribution π = ( 2 / 7 , 4 / 7 , 1 / 7 ) {\displaystyle \pi =(2/7,4/7,1/ ...
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,