Search results
Results from the WOW.Com Content Network
The North and South Geomagnetic Poles are the antipodal points where the axis of this theoretical dipole intersects the Earth's surface. Thus, unlike the actual magnetic poles, the geomagnetic poles always have an equal degree of latitude and supplementary degrees of longitude respectively (2017: Lat. 80.5°N, 80.5°S; Long. 72.8°W, 107.2°E). [4]
A1 and A2 are the geographic poles; B1 and B2 are the geomagnetic poles; C1 (south) and C2 (north) are the magnetic poles. See also: Dipole model of the Earth's magnetic field Near the surface of the Earth, its magnetic field can be closely approximated by the field of a magnetic dipole positioned at the center of the Earth and tilted at an ...
The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind , the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells.
The geomagnetic north pole is the northern antipodal pole of an ideal dipole model of the Earth's magnetic field, which is the most closely fitting model of Earth's actual magnetic field. The north magnetic pole moves over time according to magnetic changes and flux lobe elongation [2] in the Earth's outer core. [3]
The south magnetic pole, also known as the magnetic south pole, is the point on Earth's Southern Hemisphere where the geomagnetic field lines are directed perpendicular to the nominal surface. The Geomagnetic South Pole, a related point, is the south pole of an ideal dipole model of the Earth's magnetic field that most closely fits the Earth's ...
The model consists of a degree and order 12 spherical harmonic expansion of the magnetic scalar potential of the geomagnetic main field generated in the Earth's core. [2] Apart from the 168 spherical-harmonic "Gauss" coefficients, the model also has an equal number of spherical-harmonic secular variation coefficients predicting the temporal ...
The International Geomagnetic Reference Field (IGRF) is a standard mathematical description of the large-scale structure of the Earth's main magnetic field and its secular variation. It was created by fitting parameters of a mathematical model of the magnetic field to measured magnetic field data from surveys, observatories and satellites ...
The latitudes of the Virtual Geomagnetic Poles from those sites determined to be statistically significant are plotted against the stratigraphic level at which they were collected. These data are then abstracted to the standard black and white magnetostratigraphic columns in which black indicates normal polarity and white is reversed polarity.