Search results
Results from the WOW.Com Content Network
Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles.
Transversal plane theorem for planes: Planes intersected by a transversal plane are parallel if and only if their alternate interior dihedral angles are congruent. Transversal line containment theorem: If a transversal line is contained in any plane other than the plane containing all the lines, then the plane is a transversal plane.
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
A green angle formed by two red rays on the Cartesian coordinate system. In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. [1] Angles formed by two rays are also known as plane angles as they lie in the plane that contains the rays
The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.
(since these are angles that a transversal makes with parallel lines AB and DC). Also, side AB is equal in length to side DC, since opposite sides of a parallelogram are equal in length. Therefore, triangles ABE and CDE are congruent (ASA postulate, two corresponding angles and the included side). Therefore, =
Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead. Depression – along a curve from a point on the horizon to the nadir, directly below.
Transversal may refer to: Transversal (combinatorics), a set containing exactly one member of each of several other sets; Transversal (geometry), a line that intersects two or more lines at different points; Transversal (instrument making), a technique for subdividing graduations; Transversal Corporation, a software company