enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    The effects of temperature on enzyme activity. Top: increasing temperature increases the rate of reaction (Q10 coefficient). Middle: the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom: consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.

  3. Enzyme assay - Wikipedia

    en.wikipedia.org/wiki/Enzyme_assay

    Most enzymes are sensitive to pH and have specific ranges of activity. All have an optimum pH. The pH can stop enzyme activity by denaturating (altering) the three-dimensional shape of the enzyme by breaking ionic, and hydrogen bonds. Most enzymes function between a pH of 6 and 8; however pepsin in the stomach works best at a pH of 2 and ...

  4. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Many therapeutic drugs and poisons are enzyme inhibitors. An enzyme's activity decreases markedly outside its optimal temperature and pH, and many enzymes are (permanently) denatured when exposed to excessive heat, losing their structure and catalytic properties. Some enzymes are used commercially, for example, in the synthesis of antibiotics.

  5. Pepsin - Wikipedia

    en.wikipedia.org/wiki/Pepsin

    Pepsin may be inhibited by high pH (see Activity and stability) or by inhibitor compounds. Pepstatin is a low molecular weight compound and potently inhibitor specific for acid proteases with an inhibitory dissociation constant (Ki) of about 10 −10 M for pepsin.

  6. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    Therefore, pH values on the different scales cannot be compared directly because of differences in the solvated proton ions, such as lyonium ions, which require an intersolvent scale which involves the transfer activity coefficient of hydronium/lyonium ion. pH is an example of an acidity function, but there

  7. Intracellular pH - Wikipedia

    en.wikipedia.org/wiki/Intracellular_pH

    Intracellular pH (pH i) is the measure of the acidity or basicity (i.e., pH) of intracellular fluid. The pH i plays a critical role in membrane transport and other intracellular processes. In an environment with the improper pH i , biological cells may have compromised function.

  8. ATPase - Wikipedia

    en.wikipedia.org/wiki/ATPase

    For instance, inhibiting vesicular H +-ATPases would result in a rise in the pH within vesicles and a drop in the pH of the cytoplasm. All of the ATPases share a common basic structure. Each rotary ATPase is composed of two major components: F 0 /A 0 /V 0 and F 1 /A 1 /V 1. They are connected by 1-3 stalks to maintain stability, control ...

  9. Chlorophyllase - Wikipedia

    en.wikipedia.org/wiki/Chlorophyllase

    The activity of chlorophyllase also depends on the pH and ionic content of the medium. The values of kcat and kcat/Km of chlorophyllase in the presence of chlorophyll showed pKa values of 6.3 and 6.7, respectively. Temperature also affects chlorophyllase activity. Wheat chlorophyllase is active from 25 to 75 °C.