Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Whereas free glucose can easily diffuse in and out of the cell, the phosphorylated form (glucose-6-phosphate) is locked in the cell, a mechanism by which intracellular glucose levels are controlled by cells. The final step in gluconeogenesis, the formation of glucose, occurs in the lumen of the endoplasmic reticulum, where glucose-6-phosphate ...
They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation. Proteins can denature in environmental conditions the protein is not made for. [6]
Denaturation (biochemistry), a structural change in macromolecules caused by extreme conditions; Denaturation (fissile materials), transforming fissile materials so that they cannot be used in nuclear weapons; Denaturation (food), intentional adulteration of food or drink rendering it unfit for consumption while remaining suitable for other uses
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Hyperchromicity can be used to track the condition of DNA as temperature changes. The transition/melting temperature (T m) is the temperature where the absorbance of UV light is 50% between the maximum and minimum, i.e. where 50% of the DNA is denatured. A ten fold increase of monovalent cation concentration increases the temperature by 16.6 °C.
The cells will use glucose for energy as normal, and any glucose not used for energy will enter the polyol pathway. When blood glucose is normal (about 100 mg/dL or 5.5 mmol/L), this interchange causes no problems, as aldose reductase has a low affinity for glucose at normal concentrations. [citation needed]
Active transport is highly selective and regulated, with different transporters specific to different molecules or ions. Dysregulation of active transport can lead to various disorders, including cystic fibrosis, caused by a malfunctioning chloride channel, and diabetes, resulting from defects in glucose transport into cells.