enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.

  3. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...

  4. Random close pack - Wikipedia

    en.wikipedia.org/wiki/Random_close_pack

    Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container.

  5. Kepler conjecture - Wikipedia

    en.wikipedia.org/wiki/Kepler_conjecture

    Diagrams of cubic close packing (left) and hexagonal close packing (right). Imagine filling a large container with small equal-sized spheres: Say a porcelain gallon jug with identical marbles. The "density" of the arrangement is equal to the total volume of all the marbles, divided by the volume of the jug.

  6. Wikipedia : Featured picture candidates/Close-packed spheres

    en.wikipedia.org/.../Close-packed_spheres

    This yields the greatest possible packing density and the lowest energy state. — — Below is a candidate caption for use in Close-packing article, added 16:33, 26 February 2007 (and revised 20:15, 26 February 2007) — — Shown above is what the science of sphere packing calls a closest-packed arrangement.

  7. Sphere packing in a sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing_in_a_sphere

    Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

  8. Laves phase - Wikipedia

    en.wikipedia.org/wiki/Laves_phase

    In each of the three classes of Laves phase, if the two types of atoms were perfect spheres with a size ratio of /, [2] the structure would be topologically tetrahedrally close-packed. [3] At this size ratio, the structure has an overall packing volume density of 0.710. [ 4 ]

  9. Distance of closest approach - Wikipedia

    en.wikipedia.org/wiki/Distance_of_closest_approach

    The distance of closest approach is sometimes referred to as the contact distance. For the simplest objects, spheres, the distance of closest approach is simply the sum of their radii. For non-spherical objects, the distance of closest approach is a function of the orientation of the objects, and its calculation can be difficult.