Search results
Results from the WOW.Com Content Network
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control.
An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...
In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. [1] The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography .
Laue equation. In crystallography and solid state physics, the Laue equations relate incoming waves to outgoing waves in the process of elastic scattering, where the photon energy or light temporal frequency does not change upon scattering by a crystal lattice. They are named after physicist Max von Laue (1879–1960).
In fluid dynamics, Hicks equation, sometimes also referred as Bragg–Hawthorne equation or Squire–Long equation, is a partial differential equation that describes the distribution of stream function for axisymmetric inviscid fluid, named after William Mitchinson Hicks, who derived it first in 1898.
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.