enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Vector_autoregression

    A VAR with p lags can always be equivalently rewritten as a VAR with only one lag by appropriately redefining the dependent variable. The transformation amounts to stacking the lags of the VAR(p) variable in the new VAR(1) dependent variable and appending identities to complete the precise number of equations. For example, the VAR(2) model

  3. Negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_binomial_distribution

    Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...

  4. Bayesian vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_vector_autoregression

    In statistics and econometrics, Bayesian vector autoregression (BVAR) uses Bayesian methods to estimate a vector autoregression (VAR) model. BVAR differs with standard VAR models in that the model parameters are treated as random variables, with prior probabilities, rather than fixed values.

  5. Variance reduction - Wikipedia

    en.wikipedia.org/wiki/Variance_reduction

    Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used ...

  6. Negative multinomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_multinomial...

    In probability theory and statistics, the negative multinomial distribution is a generalization of the negative binomial distribution (NB(x 0, p)) to more than two outcomes. [ 1 ] As with the univariate negative binomial distribution, if the parameter x 0 {\displaystyle x_{0}} is a positive integer, the negative multinomial distribution has an ...

  7. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    In the opposite case, when greater values of one variable mainly correspond to lesser values of the other (that is, the variables tend to show opposite behavior), the covariance is negative. The magnitude of the covariance is the geometric mean of the variances that are in common for the two random variables.

  8. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    A main assumption in linear regression is constant variance or (homoscedasticity), meaning that different response variables have the same variance in their errors, at every predictor level. This assumption works well when the response variable and the predictor variable are jointly normal. As we will see later, the variance function in the ...

  9. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Monty Python references appear frequently in Python code and culture; [190] for example, the metasyntactic variables often used in Python literature are spam and eggs instead of the traditional foo and bar. [190] [191] The official Python documentation also contains various references to Monty Python routines.