Search results
Results from the WOW.Com Content Network
In edge dislocations, the Burgers vector and dislocation line are perpendicular to one another. In screw dislocations, they are parallel. [4] The Burgers vector is significant in determining the yield strength of a material by affecting solute hardening, precipitation hardening and work hardening. The Burgers vector plays an important role in ...
Schematic diagram (lattice planes) showing an edge dislocation. Burgers vector in black, dislocation line in blue. A crystalline material consists of a regular array of atoms, arranged into lattice planes. An edge dislocation is a defect where an extra half-plane of atoms is introduced midway through the crystal, distorting nearby planes of atoms.
There are two types of dislocations in crystals that can induce slip - edge dislocations and screw dislocations. Edge dislocations have the direction of the Burgers vector perpendicular to the dislocation line, while screw dislocations have the direction of the Burgers vector parallel to the dislocation line. The type of dislocations generated ...
English: An illustration of the burgers vector in a screw and edge dislocation For more info, I highly recommend "The Physics of Semiconductors" by Marius Grundmann, DOI: 10.1007/978-3-642-13884-3 Date
Here the Burgers vector is along the intersection of the planes. In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of screw dislocations. Non-planar movement of edge dislocations is achieved through climb.
Geometrically necessary dislocations can lower their free energy by stacking one atop another (see Peach-Koehler formula for dislocation-dislocation stresses) and form low-angle tilt boundaries. This movement often requires the dislocations to climb to different glide planes, so an annealing at elevated temperature is often necessary.
The dislocation line is presented in blue, the Burgers vector b in black. Edge dislocations are caused by the termination of a plane of atoms in the middle of a crystal. In such a case, the adjacent planes are not straight, but instead bend around the edge of the terminating plane so that the crystal structure is perfectly ordered on either side.
English: Simplified atomic plane diagram of an edge dislocation. (Burgers Vector in black, dislocation line in blue) (Burgers Vector in black, dislocation line in blue) Date