Search results
Results from the WOW.Com Content Network
The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.
Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...
An arrangement in which the midpoint of all the spheres lie on a single straight line is called a sausage packing, as the convex hull has a sausage-like shape.An approximate example in real life is the packing of tennis balls in a tube, though the ends must be rounded for the tube to coincide with the actual convex hull.
Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container.
An a × b rectangle can be packed with 1 × n strips if and only if n divides a or n divides b. [15] [16] de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]
A compact binary circle packing with the most similarly sized circles possible. [7] It is also the densest possible packing of discs with this size ratio (ratio of 0.6375559772 with packing fraction (area density) of 0.910683). [8] There are also a range of problems which permit the sizes of the circles to be non-uniform.
Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.
In each of the three classes of Laves phase, if the two types of atoms were perfect spheres with a size ratio of /, [2] the structure would be topologically tetrahedrally close-packed. [3] At this size ratio, the structure has an overall packing volume density of 0.710. [ 4 ]