Search results
Results from the WOW.Com Content Network
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...
A Knoevenagel condensation is demonstrated in the reaction of 2-methoxybenzaldehyde 1 with the thiobarbituric acid 2 in ethanol using piperidine as a base. [7] The resulting enone 3 is a charge transfer complex molecule.
Tetradentate ligands can be neutral so that the charge of the whole complex is the same as the central atom. A tetradentate monoanionic (TMDA) ligand has one donor atom with a negative charge. [8] A tetradentate dianionic ligand has a double negative charge, and tetradentate trianionic ligands have a triple negative charge.
Charge-transfer complex; Charge transfer band (absorption band) Charge-exchange ionization, a form of gas phase ionization; See also. Photoinduced charge separation
In the 1950s, researchers discovered that polycyclic aromatic compounds formed semi-conducting charge-transfer complex salts with halogens. In particular, high conductivity of 0.12 S/cm was reported in perylene–iodine complex in 1954. [3] This finding indicated that organic compounds could carry current.
The first generally accepted theory of ET was developed by Rudolph A. Marcus (Nobel Prize in Chemistry in 1992) [8] to address outer-sphere electron transfer and was based on a transition-state theory approach. The Marcus theory of electron transfer was then extended to include inner-sphere electron transfer by Noel Hush and Marcus.
In the 1950s, organic molecules were shown to exhibit electrical conductivity. Specifically, the organic compound pyrene was shown to form semiconducting charge-transfer complex salts with halogens. [14] In 1972, researchers found metallic conductivity (conductivity comparable to a metal) in the charge-transfer complex TTF-TCNQ.
In coordination chemistry, a ligand [a] is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs , often through Lewis bases . [ 1 ]