Search results
Results from the WOW.Com Content Network
The hydration reaction of sulfuric acid is highly exothermic. [19] As indicated by its acid dissociation constant, sulfuric acid is a strong acid: H 2 SO 4 → H 3 O + + HSO − 4 K a1 = 1000 (pK a1 = −3) The product of this ionization is HSO − 4, the bisulfate anion. Bisulfate is a far weaker acid: HSO − 4 + H 2 O → H 3 O + + SO 2− 4 ...
The contact process is a method of producing sulfuric acid in the high concentrations needed for industrial processes. Platinum was originally used as the catalyst for this reaction; however, because it is susceptible to reacting with arsenic impurities in the sulfur feedstock, vanadium(V) oxide (V 2 O 5) has since been preferred.
However, SO 3 added to concentrated sulfuric acid readily dissolves, forming oleum which can then be diluted with water to produce additional concentrated sulfuric acid. [4] Typically, above concentrations of 98.3%, sulfuric acid will undergo a spontaneous decomposition into sulfur trioxide and water H 2 SO 4 ⇌ SO 3 + H 2 O
The lead chamber process was an industrial method used to produce sulfuric acid in large quantities. It has been largely supplanted by the contact process.. In 1746 in Birmingham, England, John Roebuck began producing sulfuric acid in lead-lined chambers, which were stronger and less expensive and could be made much larger than the glass containers that had been used previously.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
The Bunsen reaction is a chemical reaction that describes water, sulfur dioxide, and iodine reacting to form sulfuric acid and hydrogen iodide: 2H 2 O + SO 2 + I 2 → H 2 SO 4 + 2HI This reaction is the first step in the sulfur-iodine cycle to produce hydrogen .
The first and faster [citation needed] process is the removal of hydrogen and oxygen as units of water by the concentrated sulfuric acid. This occurs because hydration of concentrated sulfuric acid is strongly thermodynamically favorable, with a standard enthalpy of reaction of −880 kJ/mol.
Sulfuric(IV) acid (United Kingdom spelling: sulphuric(IV) acid), also known as sulfurous (UK: sulphurous) acid and thionic acid, [citation needed] is the chemical compound with the formula H 2 SO 3. Raman spectra of solutions of sulfur dioxide in water show only signals due to the SO 2 molecule and the bisulfite ion, HSO − 3 . [ 2 ]