Search results
Results from the WOW.Com Content Network
The high cost of carbon fiber is mitigated by the material's unsurpassed strength-to-weight ratio, and low weight is essential for high-performance automobile racing. Race-car manufacturers have also developed methods to give carbon fiber pieces strength in a certain direction, making it strong in a load-bearing direction, but weak in ...
The European Commission funded a research project, C 3 HARME, under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016-2020 for the design, manufacturing and testing of a new class of ultra-refractory ceramic matrix composites reinforced with silicon carbide fibers and Carbon fibers suitable for applications in severe aerospace environments.
Fracture surface of a fiber-reinforced ceramic composed of SiC fibers and SiC matrix. The fiber pull-out mechanism shown is the key to CMC properties. CMC shaft sleeves. In materials science ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics.
Like in fiber-reinforced composites, the size dispersion of the carbon nanotubes significantly affects the final properties of the composite. Stress-strain studies of single-walled carbon nanotubes in a polyethylene matrix using molecular dynamics showed that long carbon nanotubes lead to an increase in tensile stiffness and strength due to the ...
Reinforced carbon-carbon (RCC) consists of carbon fiber-reinforced graphite, and is used structurally in high-temperature applications. The fiber also finds use in filtration of high-temperature gases, as an electrode with high surface area and impeccable corrosion resistance, and as an anti-static component. Molding a thin layer of carbon ...
The Advanced composites industry, or Advanced composite materials industry, is characterized by the use of expensive, high-performance resin systems and high-strength, high-stiffness fiber reinforcement. The aerospace industry, including military and commercial aircraft of all types, is the major customer for advanced composites.
These are made by the reaction of phenols, formaldehyde and primary amines which at elevated temperatures (400 °F (200 °C)) undergo ring–opening polymerisation forming polybenzoxazine thermoset networks; when hybridised with epoxy and phenolic resins the resulting ternary systems have glass transition temperatures in excess of 490 °F (250 °C).
Today Micarta high-pressure industrial laminates are produced with a wide variety of resins and fibers. The term has been used generically for most resin impregnated fiber compounds. Common uses of modern high-pressure laminates include electrical insulators, printed circuit board substrates, and knife handles.