Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson binomial distribution is the discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily identically distributed. The concept is named after Siméon Denis Poisson.
If X is a binomial (n, p) random variable then (n − X) is a binomial (n, 1 − p) random variable. If X has cumulative distribution function F X, then the inverse of the cumulative distribution F X (X) is a standard uniform (0,1) random variable; If X is a normal (μ, σ 2) random variable then e X is a lognormal (μ, σ 2) random variable.
The Poisson distribution, which describes a very large number of individually unlikely events that happen in a certain time interval. Related to this distribution are a number of other distributions: the displaced Poisson, the hyper-Poisson, the general Poisson binomial and the Poisson type distributions.
Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B(n, p) of the binomial distribution if n is sufficiently large and p is sufficiently small. According to rules of thumb, this approximation is good if n ≥ 20 and p ≤ 0.05 [ 36 ] such that np ≤ 1 , or if n > 50 and p < 0.1 such that np < 5 , [ 37 ...
The Poisson distribution is a good approximation of the binomial distribution if n is at least 20 and p is smaller than or equal to 0.05, and an excellent approximation if n ≥ 100 and n p ≤ 10. [31]
binomial distribution with known number of trials, n; negative binomial distribution with known ; These five examples – Poisson, binomial, negative binomial, normal, and gamma – are a special subset of NEF, called NEF with quadratic variance function (NEF-QVF) because the variance can be written as a quadratic function of the mean. NEF-QVF ...
In statistical literature, is also expressed as (mu) when referring to Poisson and traditional negative binomial models." In some data, the number of zeros is greater than would be expected using a Poisson distribution or a negative binomial distribution. Data with such an excess of zero counts are described as Zero-inflated.
Among discrete distributions, the binomial distribution and Poisson distribution can be seen as unimodal, though for some parameters they can have two adjacent values with the same probability. Figure 2 and Figure 3 illustrate bimodal distributions.