Search results
Results from the WOW.Com Content Network
In 2019, 39 million km 2 (15 million sq mi) of Earth's land surface consisted of forest and woodlands, 12 million km 2 (4.6 million sq mi) was shrub and grassland, 40 million km 2 (15 million sq mi) were used for animal feed production and grazing, and 11 million km 2 (4.2 million sq mi) were cultivated as croplands. [271]
The density at the center is the same as in the PREM, but the surface density is chosen so that the mass of the sphere equals the mass of the real Earth. See also: Shell theorem An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth's density is spherically symmetric.
Earth's circumference is the distance around Earth. Measured around the equator, it is 40,075.017 km (24,901.461 mi). Measured passing through the poles, the circumference is 40,007.863 km (24,859.734 mi). [1] Treating the Earth as a sphere, its circumference would be its single most important measurement. [2]
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
Height of Mount Everest, the highest mountain on Earth 10 4: 10 km: 10.9 km Depth of the Challenger Deep in the Mariana Trench, the deepest-known point on Earth's surface 27 km Circumference of the Large Hadron Collider, as of May 2010 the largest and highest energy particle accelerator: 42.195 km Length of a marathon: 10 5: 100 km: 100 km
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...
In SI units, the values of c, h, e and k B are exact and the values of ε 0 and G in SI units respectively have relative uncertainties of 1.6 × 10 −10 [16] and 2.2 × 10 −5. [17] Hence, the uncertainties in the SI values of the Planck units derive almost entirely from uncertainty in the SI value of G .