Search results
Results from the WOW.Com Content Network
The possible screw axes are: 2 1, 3 1, 3 2, 4 1, 4 2, 4 3, 6 1, 6 2, 6 3, 6 4, and 6 5. Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction or n/m.
The quotient on projective space leads to a quotient on the group SL(2, C). Finally, these two can be linked together by using the complex projective vector to construct a null-vector. If is a CP 1 projective vector, it can be tensored with its Hermitian conjugate to produce a Hermitian matrix. From elsewhere in this article we know this space ...
Representation theory of groups in general, and Lie groups in particular, is a very rich subject. The Lorentz group has some properties that makes it "agreeable" and others that make it "not very agreeable" within the context of representation theory; the group is simple and thus semisimple , but is not connected , and none of its components ...
Diagram showing how the polarity of the QRS complex in leads I, II, and III can be used to estimate the heart's electrical axis in the frontal plane. The QRS complex is the combination of three of the graphical deflections seen on a typical electrocardiogram (ECG or EKG). It is usually the central and most visually obvious part of the tracing.
A right bundle branch block typically causes prolongation of the last part of the QRS complex and may shift the heart's electrical axis slightly to the right. The ECG will show a terminal R wave in lead V1 and a slurred S wave in lead I. Left bundle branch block widens the entire QRS, and in most cases shifts the heart's electrical axis to the ...
ECG beat. The Pan–Tompkins algorithm [1] is commonly used to detect QRS complexes in electrocardiographic signals ().The QRS complex represents the ventricular depolarization and the main spike visible in an ECG signal (see figure).
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
familiar from quantum mechanics but interpreted in this context as coordinates of a quantum space or spacetime. These relations were proposed by Roger Penrose in his earliest spin network theory of space. It is a toy model of quantum gravity in 3 spacetime dimensions (not the physical 4) with a Euclidean (not the physical Minkowskian) signature.