enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Marston Morse applied calculus of variations in what is now called Morse theory. [6] Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new mathematical tools for the calculus of variations in optimal control theory. [6] The dynamic programming of Richard Bellman is an alternative to the calculus of variations. [7] [8] [9] [c]

  4. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    Multiple constraints [ edit ] If there is more than one constraint (for example, both a volume limit and a weight limit, where the volume and weight of each item are not related), we get the multiple-constrained knapsack problem , multidimensional knapsack problem , or m - dimensional knapsack problem .

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    Figure 2: A paraboloid constrained along two intersecting lines. Figure 3: Contour map of Figure 2. The method of Lagrange multipliers can be extended to solve problems with multiple constraints using a similar argument. Consider a paraboloid subject to two line constraints that intersect at a single point. As the only feasible solution, this ...

  6. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  7. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used. If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming ...

  8. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Although the first derivative (3x 2) is 0 at x = 0, this is an inflection point. (2nd derivative is 0 at that point.) Unique global maximum at x = e. (See figure at right) x −x: Unique global maximum over the positive real numbers at x = 1/e. x 3 /3 − x: First derivative x 2 − 1 and second derivative 2x.

  9. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.