Ad
related to: binomial distribution probability theory
Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. [1]
The binomial test is useful to test hypotheses about the probability of success: : = where is a user-defined value between 0 and 1.. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value:
In probability theory and statistics, the Poisson binomial distribution is the discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily identically distributed. The concept is named after Siméon Denis Poisson.
Within a system whose bins are filled according to the binomial distribution (such as Galton's "bean machine", shown here), given a sufficient number of trials (here the rows of pins, each of which causes a dropped "bean" to fall toward the left or right), a shape representing the probability distribution of k successes in n trials (see bottom of Fig. 7) matches approximately the Gaussian ...
Ad
related to: binomial distribution probability theory