Search results
Results from the WOW.Com Content Network
In automata theory and sequential logic, a state-transition table is a table showing what state (or states in the case of a nondeterministic finite automaton) a finite-state machine will move to, based on the current state and other inputs.
Sequential logic is used to construct finite-state machines, a basic building block in all digital circuitry. Virtually all circuits in practical digital devices are a mixture of combinational and sequential logic. A familiar example of a device with sequential logic is a television set with "channel up" and "channel down" buttons. [1]
State diagram for a turnstile A turnstile. An example of a simple mechanism that can be modeled by a state machine is a turnstile. [4] [5] A turnstile, used to control access to subways and amusement park rides, is a gate with three rotating arms at waist height, one across the entryway.
Switching circuit theory is the mathematical study of the properties of networks of idealized switches. Such networks may be strictly combinational logic, in which their output state is only a function of the present state of their inputs; or may also contain sequential elements, where the present state depends on the present state and past states; in that sense, sequential circuits are said ...
The output of a sequential circuit or computer program at any time is completely determined by its current inputs and current state. Since each binary memory element has only two possible states, 0 or 1, the total number of different states a circuit can assume is finite, and fixed by the number of memory elements.
The state diagram for a Mealy machine associates an output value with each transition edge, in contrast to the state diagram for a Moore machine, which associates an output value with each state. When the input and output alphabet are both Σ , one can also associate to a Mealy automata a Helix directed graph [ clarification needed ] ( S × Σ ...
Such data storage can be used for storage of state, and such a circuit is described as sequential logic in electronics. When used in a finite-state machine, the output and next state depend not only on its current input, but also on its current state (and hence, previous inputs). It can also be used for counting of pulses, and for synchronizing ...
As a result, the state machine is already "decoded," so the state of the machine is determined simply by finding out which flip-flop is active. This encoding technique reduces the width of the combinational logic, and as a result, the state machine requires fewer levels of logic between registers, reducing its complexity and increasing its speed.