Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
The enthalpy of solution is the solution enthalpy minus the enthalpy of the separate systems, whereas the entropy of solution is the corresponding difference in entropy. The solvation energy (change in Gibbs free energy) is the change in enthalpy minus the product of temperature (in Kelvin) times the change in entropy. Gases have a negative ...
A buffer solution contains an acid and its conjugate base or a base and its conjugate acid. [2] Addition of the conjugate ion will result in a change of pH of the buffer solution. For example, if both sodium acetate and acetic acid are dissolved in the same solution they both dissociate and ionize to produce acetate ions.
A solvation shell or solvation sheath is the solvent interface of any chemical compound or biomolecule that constitutes the solute in a solution. When the solvent is water it is called a hydration shell or hydration sphere. The number of solvent molecules surrounding each unit of solute is called the hydration number of the solute.
A common kind of hydrolysis occurs when a salt of a weak acid or weak base (or both) is dissolved in water. Water spontaneously ionizes into hydroxide anions and hydronium cations. The salt also dissociates into its constituent anions and cations. For example, sodium acetate dissociates in water into sodium and acetate ions.
If the hydration energy is greater than the lattice energy, then the enthalpy of solution is negative (heat is released), otherwise it is positive (heat is absorbed). [3]The hydration energy should not be confused with solvation energy, which is the change in Gibb's free energy (not enthalpy) as solute in the gaseous state is dissolved. [4]
“When salt is added to this system, the ions in salt are attracted to the water molecules in [the surface semi-liquid layer],” Viswanathan says. “The ions on the surface of the salt get ...
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.