enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    Hadamard product (matrices) Hilbert–Schmidt inner product; Kronecker product; Matrix analysis; Matrix multiplication; Matrix norm; Tensor product of Hilbert spaces – the Frobenius inner product is the special case where the vector spaces are finite-dimensional real or complex vector spaces with the usual Euclidean inner product

  3. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in , .

  5. Character theory - Wikipedia

    en.wikipedia.org/wiki/Character_theory

    Isomorphic representations have the same characters. Over a field of characteristic 0, two representations are isomorphic if and only if they have the same character. [1] If a representation is the direct sum of subrepresentations, then the corresponding character is the sum of the characters of those subrepresentations.

  6. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more). Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers.

  7. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    The determinant of any orthogonal matrix is either +1 or −1. As a linear transformation, an orthogonal matrix preserves the inner product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation, reflection or rotoreflection. In other words, it is a unitary transformation.

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A matrix with all entries either 0 or 1. Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix

  9. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    The multiplication representation of a self-adjoint operator, though extremely useful, is not a canonical representation. This suggests that it is not easy to extract from this representation a criterion to determine when self-adjoint operators A and B are unitarily equivalent. The finest grained representation which we now discuss involves ...