Search results
Results from the WOW.Com Content Network
In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.
Block matrix operations; Cracovian product, defined as A ∧ B = B T A; Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry
The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...
It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more). Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers.
The Frobenius inner product may be extended to a hermitian inner product on the complex vector space of all complex matrices of a fixed size, by replacing B by its complex conjugate. The symmetry of the Frobenius inner product may be phrased more directly as follows: the matrices in the trace of a product can be switched without changing the ...
This example used the standard inner product, which is the map := ¯, but if a different inner product is used, such as := ¯ where is any Hermitian positive-definite matrix, or if a different orthonormal basis is used then the transformation matrices, and thus also the above formulas, will be different.
The following equations are satisfied: =, =, =. Therefore, the matrix δ can be considered as an identity matrix. Another useful representation is the following form: = = This can be derived using the formula for the geometric series.
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in , .