Search results
Results from the WOW.Com Content Network
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
The lac operon is used in the biotechnology industry for production of recombinant proteins for therapeutic use. The gene or genes for producing an exogenous protein are placed on a plasmid under the control of the lac promoter. Initially the cells are grown in a medium that does not contain lactose or other sugars, so the new genes are not ...
In the absence of lactose, the constitutively expressed lac repressor protein binds to the operator region of the DNA and prevents the transcription of the operon genes. When present, lactose binds to the lac repressor, causing it to separate from the DNA and thereby enabling transcription to occur.
Galactoside permease is a protein coded by the lacY gene of the lac operon, and is found bound to the membrane of a cell for the purpose of binding galactoside molecules that have been solubilized. The protein is part of a system whose main function is to catalyze the accumulation and transport of lactose and other beta-galactosides across the ...
It is encoded by the lacY gene in the lac operon. The LacY gene is a component of the lac operon that encodes lactose permease, a protein responsible for breaking down lactose into glucose and galactose, alongside transacetylase and beta galactosidase.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Spoilers ahead! We've warned you. We mean it. Read no further until you really want some clues or you've completely given up and want the answers ASAP. Get ready for all of today's NYT ...
In E. coli, the lacZ gene is the structural gene for β-galactosidase; which is present as part of the inducible system lac operon which is activated in the presence of lactose when glucose level is low. β-Galactosidase synthesis stops when glucose levels are sufficient. [2] β-Galactosidase has many homologues based on similar sequences.