Search results
Results from the WOW.Com Content Network
C = Concentration of the chemical in the contaminated environmental medium (soil or water) to which the person is exposed. The units are mg/kg for soil and mg/L for water. IR i = Intake rate of the contaminated environmental medium for age bin "i". The units are kg/day for soil and L/day for water. BW i = Body weight of the exposed person for ...
1 Nm 3 of any gas (measured at 0 °C and 1 atmosphere of absolute pressure) equals 37.326 scf of that gas (measured at 60 °F and 1 atmosphere of absolute pressure). 1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and ...
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., Z n = 1 {\displaystyle Z_{n}=1} ).
where TDS is expressed in mg/L and EC is the electrical conductivity in microsiemens per centimeter at 25 °C. The conversion factor k e varies between 0.55 and 0.8. [5] Some TDS meters use an electrical conductivity measurement to the ppm using the above formula. Regarding units, 1 ppm indicates 1 mg of dissolved solids per 1,000 g of water. [6]
Calcium and magnesium ions present as sulfates, chlorides, carbonates and bicarbonates cause water to be hard. Water chemists measure water impurities in parts per million (ppm).
The conversion equations depend on the temperature at which the conversion is wanted (usually about 20 to 25 °C). At an ambient sea level atmospheric pressure of 1 atm (101.325 kPa or 1.01325 bar ), the general equation is:
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
If milliliters are used consistently for volume measurements, the result of the COD calculation is given in mg/L. The COD can also be estimated from the concentration of oxidizable compound in the sample, based on its stoichiometric reaction with oxygen to yield CO 2 (assume all C goes to CO 2 ), H 2 O (assume all H goes to H 2 O), and NH 3 ...