Search results
Results from the WOW.Com Content Network
This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g 44 = −c 2 + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity).
The exterior Schwarzschild solution with r > r s is the one that is related to the gravitational fields of stars and planets. The interior Schwarzschild solution with 0 ≤ r < r s, which contains the singularity at r = 0, is completely separated from the outer patch by the singularity at r = r s. The Schwarzschild coordinates therefore give no ...
The solution was proposed independently by Paul Painlevé in 1921 [1] and Allvar Gullstrand [2] in 1922. It was not explicitly shown that these solutions were simply coordinate transformations of the usual Schwarzschild solution until 1933 in Lemaître's paper, [3] although Einstein immediately believed that to be true.
Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation). Alternatively, we can plug in specific functions (possibly depending on some parameters) to obtain an isotropic coordinate chart on a ...
In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, the angular momentum of the mass, and the universal ...
See Deriving the Schwarzschild solution for a more detailed derivation of this expression. Depending on context, it may be appropriate to regard a and b as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation). Alternatively, we can plug in ...
There are actually multiple possible ways to extend the exterior Schwarzschild solution into a maximally extended spacetime, but the Kruskal–Szekeres extension is unique in that it is a maximal, analytic, simply connected vacuum solution in which all maximally extended geodesics are either complete or else the curvature scalar diverges along ...
In the Schwarzschild solution, it is assumed that the larger mass M is stationary and it alone determines the gravitational field (i.e., the geometry of space-time) and, hence, the lesser mass m follows a geodesic path through that fixed space-time. This is a reasonable approximation for photons and the orbit of Mercury, which is roughly 6 ...