enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g 44 = −c 2 + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity).

  3. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The exterior Schwarzschild solution with r > r s is the one that is related to the gravitational fields of stars and planets. The interior Schwarzschild solution with 0 ≤ r < r s, which contains the singularity at r = 0, is completely separated from the outer patch by the singularity at r = r s. The Schwarzschild coordinates therefore give no ...

  4. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as r s = 2 G M c 2 , {\displaystyle r_{\text{s}}={\frac {2GM}{c^{2}}},} where G is the gravitational constant , M is the object mass, and c is the ...

  5. Interior Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Interior_Schwarzschild_metric

    In Einstein's theory of general relativity, the interior Schwarzschild metric (also interior Schwarzschild solution or Schwarzschild fluid solution) is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid (implying that density is constant throughout the body) and has zero pressure at the surface.

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s /r is roughly 4 parts in a

  7. Weyl metrics - Wikipedia

    en.wikipedia.org/wiki/Weyl_metrics

    Unlike the nonlinear Poisson's equation Eq(7.b), Eq(8.b) is the linear Laplace equation; that is to say, superposition of given vacuum solutions to Eq(8.b) is still a solution. This fact has a widely application, such as to analytically distort a Schwarzschild black hole .

  8. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    The Schwarzschild metric is named in honour of its discoverer Karl Schwarzschild, who found the solution in 1915, only about a month after the publication of Einstein's theory of general relativity. It was the first exact solution of the Einstein field equations other than the trivial flat space solution .

  9. Distorted Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Distorted_Schwarzschild_metric

    End derivation. Eq(5.a) is the linear Laplace's equation; that is to say, linear combinations of given solutions are still its solutions. Given two solutions { , } to Eq(5.a), one can construct a new solution via